Audi Vorsprung durch Technik



### Application of CFD to Aerodynamics & Aeroacoustics Development at Audi AG Dr. Moni Islam, November 2015

#### Aerodynamics & Aeroacoustics Development at Audi Contents

- Motivation
- Aerodynamics / Aeroacoustics Development Process
- CFD Methodology and Applications
- Using Open-Source Software in an Industrial Environment
- Summary and Conclusions



Motivation



#### Aerodynamics & Aeroacoustics Development at Audi CO<sub>2</sub> Targets for Audi Fleet



#### Aerodynamics & Aeroacoustics Development at Audi WLTP Certification Cycle (1)



5 Dr. Moni Islam, Wind-Tunnel Centre, 23. 11. 2015

Audi Vorsprung durch Technik

#### Aerodynamics & Aeroacoustics Development at Audi WLTP Certification Cycle (2)

- Vehicle certification according to WLTP within the next 3 years at latest
- Greater emphasis on aerodynamics in CO<sub>2</sub> targets due to
  - Higher average vehicle speed
  - Influence of vehicle options (eg. rims, tyres, trim, ...) must be accounted for
- Significant challenge for development methods and resources

#### Definition of Test Mass: Influence of aerodynamic Options on CO<sub>2</sub>

VW evaluated as an example the influence of mass and of some aerodynamic options on CO<sub>2</sub> emissions for an A-class vehicle. Variations of aerodynamic coefficient and the projected frontal area of the vehicle are shown in the table below.







Aerodynamics / Aeroacoustics Development Process



#### Aerodynamics & Aeroacoustics Development at Audi Development Process

| 0 | Concept Development                                                                                                                                                                                                                                        | Development                                                                                                                                                                                                                                                                                                                                                                                               | Pre-Production                                                                                                                                                                                                  | Production                                                                                                                                                 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <ul> <li>Concept Development</li> <li>Analysis of predecessor and competitor vehicles</li> <li>Assessment of proposed vehicle concept w.r.t.:</li> <li>Powertrain</li> <li>Suspension</li> <li>Ergonomics</li> <li>Packaging</li> <li>Underbody</li> </ul> | <ul> <li>Development</li> <li>Continuous development and optimisation of relevant details in cooperation with styling and design departments</li> <li>Exterior surface</li> <li>Add-on parts, eg. mirrors, underbody panels, inlet grille, rain gutter</li> <li>Doors / flaps</li> <li>Roof systems incl. cabriolet soft-top</li> <li>Verification and confirmation of development progress at</li> </ul> | Pre-Production F<br>Optimisation of<br>details related to<br>final production<br>process<br>Final confirmation<br>of all aerodynamic<br>and aeroacoustic<br>vehicle properties<br>in wind tunnel<br>and on road | Periodic<br>monitoring of<br>production<br>vehicles for<br>aeroacoustic<br>quality control<br>Analysis of<br>potential<br>weaknesses for<br>improvement in |
| • | <ul> <li>Doors / sealings</li> <li>Glazing</li> <li>Add-on parts</li> <li>Damping measures</li> <li>Definition of targets</li> </ul>                                                                                                                       | suitable milestones using wind-tunnel and road testing as<br>well as CFD with models and prototypes<br>Calibration of aeroacoustics with total vehicle acoustics                                                                                                                                                                                                                                          |                                                                                                                                                                                                                 | successor<br>projects                                                                                                                                      |

10 Dr. Moni Islam, Wind-Tunnel Centre, 23. 11. 2015

Audi Vorsprung durch Technik

#### Aerodynamics & Aeroacoustics Development at Audi Aerodynamics Goals



- Basic premise for development of production vehicle:
  - Optimum between styling, costs and aerodynamics must be achieved
- c<sub>D</sub> target increasingly driven by CO<sub>2</sub> targets
- c<sub>L</sub> targets primarily driven by vehicle-dynamics requirements



#### Aerodynamics & Aeroacoustics Development at Audi Focus of Aerodynamics Development Activities (1)

 Optimisation of add-on parts e.g. roof and rear-window spoilers



 Development of vehicle styling for optimal aerodynamics





Aerodynamics & Aeroacoustics Development at Audi Focus of Aerodynamics Development Activities (2)

Functional optimisation of all platform components including underbody



 Functional optimisation of cooling-air ducting





#### Aerodynamics & Aeroacoustics Development at Audi Focus of Aeroacoustics Development Activities



#### Aerodynamics & Aeroacoustics Development at Audi Audi A4 Aeroacoustics Benchmark



Goal achieved: "best in class" aeroacoustics

Audi Vorsprung durch Technik

# Aeroacoustic Wind-Tunnel



Primary development tool with >2700 h / year testing time for production vehicles

16 Dr. Moni Islam, Wind-Tunnel Centre, 23. 11. 2015

Audi Vorsprung durch Technik

#### Aerodynamics & Aeroacoustics Development at Audi Development Tools – Wind Tunnel

- Audi Aeroacoustic Wind Tunnel (1998)
  - Open test section
  - 11 m<sup>2</sup> nozzle
  - Full ground simulation
     5-belt system and BL suction
  - 6-component balance for forces and moments up to U<sub>∞</sub> = 300 km/h
- Demand now significantly exceeds capacity
- Used only for full-scale testing
- 1:4-scale testing performed at FKFS wind tunnel in Stuttgart





17 Dr. Moni Islam, Wind-Tunnel Centre, 23. 11. 2015





#### Aerodynamics & Aeroacoustics Development at Audi CFD – Overview

- Advanced aerodynamics development no longer possible without CFD due to complexity of problems to be solved and accuracy required
- CFD for vehicle aerodynamics standard component of development process with multiple goals
  - Evaluation of styling models in early development phase
  - Substitution of wind-tunnel experiments to compensate for insufficient testing capacity
  - Supplementary information to wind-tunnel data for analysis of phenomena of interest



#### Aerodynamics & Aeroacoustics Development at Audi CFD – Requirements for Development Process

- Very short turn-around times / high process integration to keep pace with development cycle
  - <3 days from new geometry to aerodynamics result</p>
  - High robustness of solver
  - Useable also by non-expert users
- High accuracy of results
  - Trends found in experiments must be captured
  - Accuracy must be reliable, especially where no experiments are available
- Acceptable costs
  - Must be competitive with wind tunnel experiments



#### Aerodynamics & Aeroacoustics Development at Audi CFD – Motivation for Considering Open-Source Software

- Commercial environment for CFD codes
  - Very small number of commercial codes truly viable for productive use
  - Proprietary technology offering limited insight or black-box approach
  - License fees increase with increasing use
  - Code development driven primarily by vendor's interest
  - Very high overhead associated with switching to alternative product
- Limitations to meeting requirements for aerodynamics development process
- Audi's conclusion: Alternative approach needed!



#### Aerodynamics & Aeroacoustics Development at Audi CFD – Features of Open-Source Software (1)

- Solution to many observed problems provided by open-source model for CFD code
- High process integration
  - Robustness, ease of use and application speed achieved by application-specific customisation
- High accuracy in principle
  - Full transparency of technology (vs. black-box approach) permits complete analysis and solution of problems
  - New / alternative technology can be implemented rapidly on demand



### Aerodynamics & Aeroacoustics Development at Audi CFD – Features of Open-Source Software (2)

- Costs under GPL licensing
  - Remain fixed with increasing use: No license fees coupled to solver use
  - Limited and predictable: User pays for only what he needs
- General advantages
  - Excellent long-term potential for technological development and process integration due to high customisability
  - No inherent disincentives to use of technology
    - Closer coupling to vehicle development process through increased use
    - More rapid technological development
  - User has free choice of technology provider



#### Aerodynamics & Aeroacoustics Development at Audi Application of Open-Source CFD Technology

- OpenFOAM<sup>®</sup>-based open-source CFD toolbox chosen by Audi
  - Customised applications development, support and consulting by ICON Ltd.
  - Initially based on public-domain OpenFOAM toolbox
- Multi-year project to fully integrate open-source applications into Audi aerodynamics development process
  - Development and support by ICON and other engineering service providers
  - Validation and integration in collaboration with Volkswagen and SEAT
  - Details first published in SAE 2009-01-0333

#### Full, exclusive productive use for vehicle development since January 2009



#### Aerodynamics & Aeroacoustics Development at Audi Aerodynamics CFD Process



25 Dr. Moni Islam, Wind-Tunnel Centre, 23. 11. 2015

Audi Vorsprung durch Technik

### Aerodynamics & Aeroacoustics Development at Audi Aerodynamics CFD Applications – Mesh Generator

- Volume mesher developed and maintained by ICON
  - Originally based on autoHexMesh from public OpenFOAM release
  - Unstructured hexahedral meshes
  - Local refinement
  - Feature-line handling
  - Cell-quality optimisation
  - Fully parallel operation



### Aerodynamics & Aeroacoustics Development at Audi Aerodynamics CFD Applications – Flow Solver

- Multi-step solution procedure developed and maintained by ICON
  - Incompressible LES
  - DES formulation using Spalart-Allmaras model
  - Based on oodles solver from public OpenFOAM release
  - Case set-up application to set initial and boundary conditions
  - Local blending for differencing schemes to increase solver stability
  - Function objects for on-the-fly analysis





Aerodynamics & Aeroacoustics Development at Audi Aerodynamics CFD Productivity

- Sample computing resources
  - NEC LX2200 cluster with 8064 cores (Intel Xeon E5-2660)
  - QDR Infiniband interconnect
  - Jobs run on 128 to 256 cores
  - Queueing system configured to run up to 10 jobs simultaneously
  - Total of >800 jobs run per year
- Bottleneck no longer computing capacity, but human resources!





#### Aerodynamics & Aeroacoustics Development at Audi Sample Aerodynamics CFD Result

- Example from standard CFD setup
  - Audi A4 Avant (predecessor vehicle)
  - Includes ground simulation & underbonnet flow
  - Model size: ca. 100 M cells
  - Number of cores: 256
  - Simulation run time: ca. 87 h for 2 s physical time

|            | <i>c</i> <sub>D</sub> [-] | с <sub>Lf</sub> [-] | <i>c</i> <sub><i>Lr</i></sub> [-] |
|------------|---------------------------|---------------------|-----------------------------------|
| Experiment | 0.316                     | 0.086               | 0.047                             |
| Simulation | 0.313                     | 0.084               | 0.071                             |

Rear lift typically problematic for estate vehicle







#### Aerodynamics & Aeroacoustics Development at Audi CFD Validation Example from 2009 SAE Paper

Example: Audi A6 predecessor production vehicle (mock-up, no ground simulation)





#### Aerodynamics & Aeroacoustics Development at Audi CFD for Audi A4 – Active Inlet Louvres

Active inlet louvres restrict cooling-air flow, thereby reducing c<sub>D</sub> by 0.008







#### Aerodynamics & Aeroacoustics Development at Audi Optimised Underbody of Audi A4



32 Dr. Moni Islam, Wind-Tunnel Centre, 23. 11. 2015

Vorsprung durch Technik

#### Aerodynamics & Aeroacoustics Development at Audi CFD for Audi A4 – Rear-Axle Flow Deflectors

Rear-axle flow deflectors reduce c<sub>D</sub> by 0.004





#### Aerodynamics & Aeroacoustics Development at Audi CFD for Audi A4 – Wing Mirror

Mean square pressure fluctuations on side window significantly reduced by optimised mirror concept on new Audi A4 

major contribution to "best in class" aeroacoustics





#### Aerodynamics & Aeroacoustics Development at Audi **CFD** Methods Development - Aerodynamics

- Refinement of existing methodology ongoing, as need for improved accuracy always exists
- Methods development always done together with vehicle development
- Deep understanding of all aspects of wind-tunnel testing essential for assessing accuracy of experimental data and pointing to weaknesses of current methodology



35 Dr. Moni Islam, Wind-Tunnel Centre, 23. 11. 2015

#### Aerodynamics & Aeroacoustics Development at Audi CFD Methods Development – Aeroacoustics

- Aeroacoustics CFD currently not standard part of vehicle-development process
- Methods development for various applications ongoing
- Productive use only expected in the long term due to very high complexity of physics





Summary & Conclusions



#### Aerodynamics & Aeroacoustics Development at Audi Open-Source Software in an Industrial Environment

- Integrating open-source software in industrial environment demonstrably viable
- Debunking of common myths required first
  - Open source / GPL licensing does not mean CFD costs nothing
  - Costs exist and must be borne by the user
- Level of complexity no longer higher than closed-source codes thanks to tailored user interface
- Partnership approach with technology provider important in order to customise applications and improve simulation methods



#### Aerodynamics & Aeroacoustics Development at Audi Summary and Conclusions

- Increasing importance of vehicle aerodynamics and aeroacoustics requires modern development tools
- Integrated application of wind-tunnel testing and CFD in Audi's development process
- Open-source CFD most promising technology available for productive process integration
- Both wind-tunnel and CFD technology continue to be developed at Audi to meet challenge of continuously increasing design targets









## Thank you for your attention.

