

Predicting and Improving the Performance of a Bagless Vacuum Cleaner using CFD

Francisco Campos f.campos@iconcfd.com

3rd ANSA & µETA International Conference 2009

- **Bagless Vacuum Cleaner Technology**
- Project Motivations
- **# CFD Methodology**
- **# CFD Work Summary**
 - 2nd Stage Cyclone Optimisation
 - Baseline Geometry
 - Optimised Geometry
- **#** Conclusions

Bagless Vacuum Cleaner Technology

28

Project Motivations

Technology • Process • Consulting

LEULI

- Separation efficiency tested using Kaolin
- Can separation efficiency be improved beyond current values?
- Modify 2nd separation stage design?
- What happens at different operating flow rates?

88

Optimisation 2nd Separation Cyclone

CFD Baseline Design

CFD Modified Design

<u>Summary</u>

- Muschelknautz model (MM) implemented in Fortran
- modeFrontier → optimisation of individual 2nd stage separators cyclones using MM
 - Optimisation objectives:
 - 1. Minimise total pressure drop (Δp)
 - 2. Maximise separation efficiency (η_{max})
 - 5792 feasible designs variations evaluated in mF → 72 initial designs from Sobol DOE followed by 100 NSGAII generations
- CFD tests performed using single cyclone parametric model for validation purposes

22

Muschelknautz Model

- Semi-empirical model developed over 30 years to predict performance of cyclone separators across a wide range of sizes and applications.
- Model accounts for: wall roughness (due to material and collected solids); saltation or mass loading effects; particle size distribution.
- Model inputs → Geometric parameters Flow rates for air & solids Particle size distribution
- Cutputs → Overall separation efficiency Total pressure loss x50 and Grade Efficiency Curve

88

Optimisation 2nd Stage Cyclones

Technology • Process • Consulting

LEULI

28

mF Optimisation Workflow

Technology • Process • Consulting

LEULI

88

mF Optimisation Results: η vs. Δp

Technology • Process • Consulting

LEULI

28

mF Optimisation Results

CFD Validation Model: CFX

- Steady-state flow 88
- Air constant properties 88 evaluated at 25°C and 1atm
- Turbulence \rightarrow BSL RSM 88
- Uncoupled Lagrangian 88 particle tracking
- Gravity, drag and turbulence 88 effects evaluated on particles
- Particles do not stick or 88 deposit at walls

100

Optimisation 2nd Stage Cyclones

Technology • Process • Consulting

CFD Mesh: ANSA

CFD Mesh → 200k Cells
CFD mesh algorithms

88

MM Validation

Technology • Process • Consulting

		CFD Model	Muschelknautz Model
aseline	η	98.73%	98.10%
	$\Delta \mathbf{p_0}$	750.5 Pa	2232.9 Pa
η _{max}	η	98.07%	98.93%
	$\Delta \mathbf{p_0}$	1075.17 Pa	2236.8 Pa
Δp_{min}	η	97.28%	98.10%
	$\Delta \mathbf{p_0}$	650.15 Pa	996.0 Pa

1-11

CFD Model: Ansys CFX

- Steady-state flow
- Air constant properties evaluated at 25°C and 1atm
- **#** Turbulence \rightarrow BSL RSM
- Uncoupled Lagrangian particle tracking
- Gravity, drag and turbulence effects evaluated on particles
- Particles do not stick or deposit at walls

1.179m/s for 13L/s 1.904m/s for 21L/s

88

INLET

- $-\Delta p_0 = 0 Pa$
- Flow normal to face
- Medium turbulence
- Kaolin kg/s = 1% of air
- 100k particles injected PDF for particle sizes

88

CFD Mesh: ANSA

- **CAD** preparation
- **#** CFD Mesh \rightarrow 17.2M Cells
- CFD mesh algorithms

"Leon)

Technology • Process • Consulting

88

Results: Hopper Cross Flow

Technology • Process • Consulting

88

Results: Flow Balance

LEOL

88

Technology • Process • Consulting

Results: Separation Efficiency

ICON | www.iconCFD.com | Delivering Independent and Confidential Support and Expertise since 1992

CFD Analysis: Modified Design

Technology • Process • Consulting

vioaified Design

CFD Analysis Optimised Design

Technology • Process • Consulting

1-01

88

Results: Flow Balance

CFD Analysis Optimised Design

Technology • Process • Consulting

1-01

88

Results: Separation Efficiency

- A CFD methodology combining 1D analysis, modeFrontier, ANSA and CFX was developed to:
 - Estimate performance parameters
 - Understand existing/potential flow related phenomena not seen in experiments
 - Propose design modifications and verify their effects
- **Benefits to Hoover Candy:**
 - Ability to reduce prototyping
 - Ability to reduce testing
 - Better, cheaper and greener vacuum cleaners

Thank you for your attention

