

Open Source CFD in Practice A path to industrial scale application

Prepared by: Dr E. De Villiers, ICON (UK) Presented by: Dr K. Laakkonen, ICON (Finland) NOTE: Some images have been removed from this presentation due to content distribution restrictions

ICON www.iconCFD.com Finnish OpenFOAM Users Day 2009

Introduction to Icon

- Independent, Privately-owned Company Established 1992
 - Being independent, Icon can recommend the best technology from the commercial and open source community
- Principal Activity: Computational Fluids Dynamics (CFD)
 - Software/Methods development
 - Consultancy
 - Support and Training
- 45 employees principal locations: UK (HQ), Germany, Greece, Spain

17-11

Introduction to Icon

Technology • Process • Consulting

58

- Icon has used Foam/OpenFOAM[®] for consultancy since 2001
- Icon support for OpenFOAM started in January 2005
 - First training provided 2006
- Icon services based on OpenFOAM
 - Consultancy
 - Software Development and Maintenance
 - Technical Support
 - Training: www.opensourcecfd.com/training
 - Icon are the organisers of the Open Source CFD International Conference: www.opensourcecfd.com/conference

OPENFOAM® is a registered trade mark of OPENCFD Limited.

Motivation

- Why Open Source?
 - Reducing total cost of ownership (TCO) of CFD process
 - Scalable, robust, long-term solutions
 - Cutting edge technology for improved accuracy
 - Customisability
- Since Icon are committed to providing the best solutions for customer requirements, this increasingly means Open Source software.

Approach

- Technology Process Consulting
- Introducing Open Source CFD solutions in industry
 - Not only about new developments and customisation
 - Integration into efficient processes from CAD to reporting
 - Use the best tools for each component
 - Ensure robustness and reduce sources of error
 - Be receptive to the needs and culture of industry!
- Two examples of this approach to industrial solutions:
 - Airbus duct characterisation process
 - New developments for mesh generation

- October 2007 the problem:
 - Characterise cabin air outlet duct flow
 - Pressure loss
 - Comfort factors flow uniformity
 - Cabins sensitive buoyancy dominated flows
 - Cabins boundary layers

88

LEULI

Technology • Process • Consulting

Standard cabin configuration (7 passenger rows)

- October 2007 the problem:
 - Characterise cabin air outlet duct flow
 - 25 different uncleaned CAD geometries and 2D drawings
 - Strict 2.5 month time scale for delivery
 - Existing methods too slow and man-power intensive
 - Not enough licences for proprietary solvers

88

1 P-11

Technology • Process • Consulting

- The solution:
 - CATIA v5 for minimal CAD cleanup and preparation
 - Fast CAD creation and modification
 - FOAMpro GUI for case setup
 - Allows non-expert users intuitive access to applications
 - Reduces user input errors
 - Automated in-house mesh generator (developed by OpenCFD[®] and ICON)
 - Can mesh un-cleaned CAD
 - Reduced CAD cleanup time by 75%
 - OPENFOAM steady state flow solver
 - Excellent scalability
 - Standardised post-processing

- FOAMpro GUI:
 - GUI for setting up meshing, boundaries, initial conditions, schemes, numerical controls and other settings
 - Current focus incompressible RAS and LES simulations
 - Linux & Windows supported
 - Batch execution capability

55

(FO)

- Automatic mesh generation :
 - Features:
 - Fully parallel (+ load balancing)
 - Surface layers
 - Error free zero manual correction

NOTE: Some images have been removed from this presentation due to content distribution restrictions

Technology • Process • Consulting

88

- Results :
 - 25 meshes generated with 0 errors
 - Approx. 3M cells each

Less than 5 man hrs / case

88

Lean

Technology • Process • Consulting

NOTE: Some images have been removed from this presentation due to content distribution restrictions

- Results :
 - 27 baseline cases + modeFRONTIER[®] based optimisations
 - All simulations completed inside deadline (2.5 months)
 - 64 core cluster, 1 engineer
- Comprehensive characterisation of duct design achieved

NOTE: Some images have been removed from this presentation due to content distribution restrictions

(HO)

- Process development for racing vehicle aerodynamics
 - includes mesh generation
 - validate models and numerics
 - RAS steady state
- Showcase for project driven feature addition

UEULI

Technology • Process • Consulting

88

Courtesy of:

- Improved automatic mesh generator
 - Feature lines
 - Better layer coverage and quality
 - Cell quality improvement

88

LEULI

- Further additions:
 - Zonal meshing (with OpenCFD)
 - Porous media

Leon

- Further additions:
 - MRF support
 - Solver integration

Leon

- Initial results
 - Lift 2985.34N within 10% of current best practice methods
 - Drag 1228.41N within 15%
- Mesh, models and numerical setup still work in progress

58

(HO)

Chicago

Chicago

- Proof of concept simulation for built environment
 - Unsteady wind loading on Sears Tower
 - Wind speed: NE 60 mph
- Solution:
 - Automatic mesher (~30M cells)
 - DES (oodles) 3 min 20 s simulation time

The road ahead

- ICON FOAMpro Support Service
 - User Support, User Interface, Industrial Applications
 - Publicly available in 2009
- Broadening of FOAMpro GUI feature set
 - Compressible & multiphase
 - More boundary conditions, models, etc.
 - Monitoring capabilities
- Further improvement to automatic mesh generator
 - Robustness/efficiency
 - Greater automation (less CAD work)
- Productivity tools
 - Automated post-processing

CATIA v5 is a registered trademark of Dassault Systemes S.A. modeFRONTIER is a registered trademark of ESTECO SRL OPENFOAM is a registered trademark of OpenCFD Ltd. OpenCFD is a registered trademark of OpenCFD Ltd.

www.iconCFD.com

Copyright ©1992-2008 Icon Computer Graphics Ltd. All rights reserved